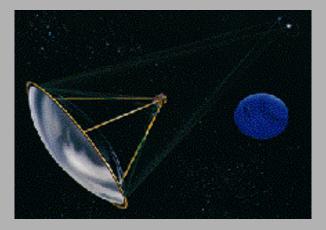


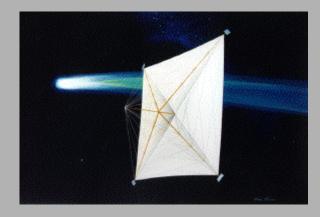
Cold Hibernated Elastic Memory (CHEM) Self-Deployable Structures

Presented at SPIE Symposium on Smart Structures and Materials 1 - 5 March, 1999, Newport Beach, CA

W. Sokolowski^a, A. Chmielewski^a, S. Hayashi^b, T. Yamada^c
^a Jet Propulsion Laboratory, Pasadena, CA
^b Nagoya R & D Center, Mitsubishi Heavy Industry, Japan
Dept. of Chemical Engineering, Kanazawa University, Japan


Contents

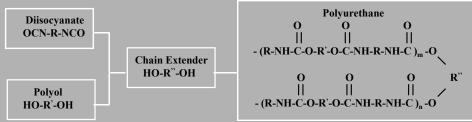
- Introduction
- Shape Memory Polymers
- CHEM Structure Description
- Benefits
- Potential Applications
- CHEM Technology Development
- Summary


Introduction

• New spacecraft architecture

- small at launch but deploys large apertures and appendages in space

• Major efforts to develop low mass and small launch volume expandable structures

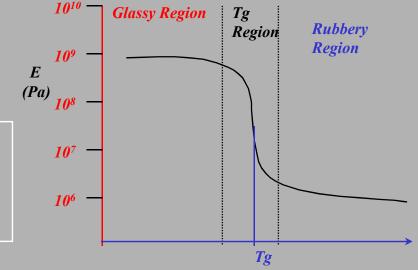

• Results:

- space inflatables
- CHEM self-deployable structures

Shape Memory Polymers

. Description

Polyurethane-based thermoplastics developed by Mitsubishi Heavy Industry
Polymerization:



- Required molar ratio:

 $\frac{\text{mole of NCO group}}{\text{total mole of OH group}} \leq 1$

Properties*	<i>MM - 4500</i>
Density (g/cm ³)	1.15
Tg (⁰ C)	45
E below Tg (MPa)	1102
E above Tg (MPa)	3.8
Recovery force (MPa)	up to 4.1

* from Virginia Tech

Temperature

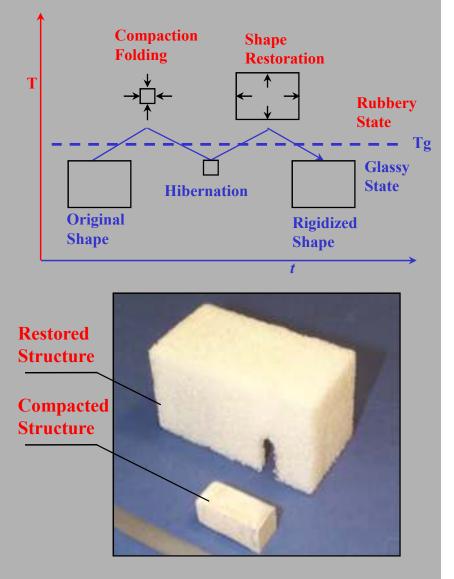
• Characteristics

- Light weight
- Recover up to 400% of plastic strain
- Wide range of glass-transition temperature Tg
- Large reversible changes of properties
- Low recovery force
- Easy processing
- Low cost

CHEM Description

Characteristics

Utilizes shape memory polymer
(SMP) in foam structures.
Precision deployment by elastic
recovery and shape memory effect.
Reversible compaction/deployment/


rigidization cycle.

- High full/stowed volume ratio.
- Wide range of glass-transition temperature Tg: from -70°C to +100°C.
- High ratio of E below Tg to E above Tg.

- Heat effective deployment: small transition range.

- Cold hibernation allows long-term unconstrained stowage.

• CHEM Processing Cycle

Benefits

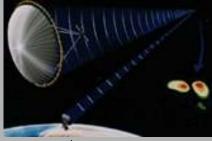
- Low mass
- Low stowage volume
- High reliability
- Low cost / quick technology development
- Self-deployable
- Very simple
- High dynamic damping
- Clean deployment and rigidization
- None long-term stowage effects
- Ease of fabrication
- Impact and radiation resistant
- Good thermal and electrical insulator

Disadvantage:

• Heat energy is needed for deployment. Natural heat sources are considered to be utilized

Potential Space Applications

• Support Structures


• Solar Array

• In-situ Propellant Production

• Robotics

• Antennas

• Trans Habs

• Radar

• Space Habitats

• Thermal Control

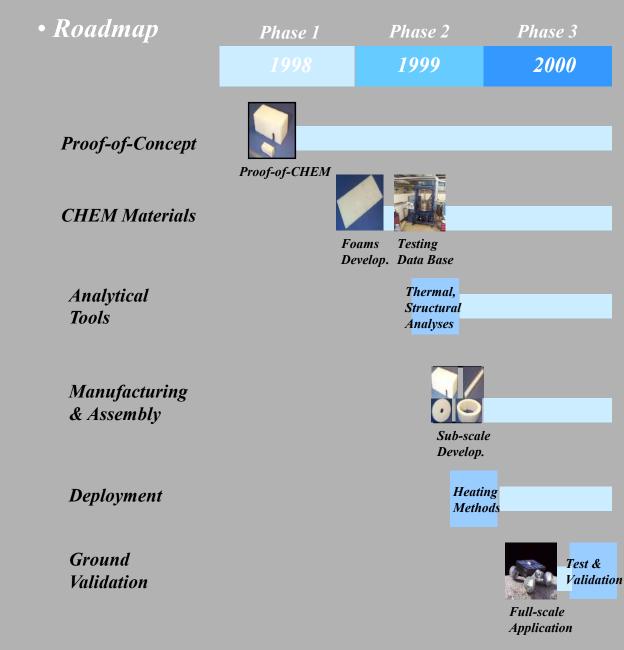
Potential Commercial Applications

• Shelters, Hangars

Coolers

• Camping tents

• Tanks, Containers



Thermos

• Outdoor furniture

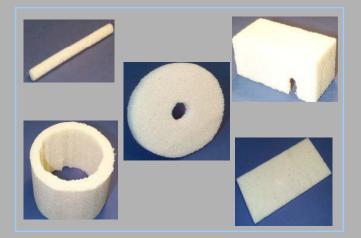
CHEM Structures Development

• Technology Team JPL/NASA & MHI + Government/University/ Industry

• Objective

Develop & validate CHEM structure technology for space applications

• CHEM Program


FY '98 - Phase 1: Proof-of-Concept FY '99 - Phase 2: Characterization & sub-scale development FY '00 - Full-scale development & ground validation

Organization: NASA/JPL POC: Witold Sokolowski Phone: 818-354-4482 E-mail: Witold.M.Sokolowski@jpl.nasa.gov

Proof-of-CHEM Concept

• Objective

Build small models and demonstrate the basics of CHEM.

Properties	M 5520	M-18G
Density (g/cm³)	0.032	0.049
Tg (⁰ C)	63	-4
E_g below Tg (MPa)	2.69	7.44
E_r above Tg (MPa)	0.064	0.023
E_{Q}/E_{r}	42	323

• Results

- High full/stowed volume ratios above Tg: up to 40.
- Long-term unconstrained stowage in hibernated state: over 1 year and continued.
- Deployment when heating above Tg.
- Precision shape restoration after long stowage.
- Rigidization of original shape when cooling below Tg.
- E modulus was increased 3 times by chopped fiber glass reinforcement

Summary

- Experiments confirmed the feasibility of CHEM structures.
- •CHEM structures will provide space and commercial users a revolutionary, next generation self-deployable light weight structure with high reliability, simplicity and low cost.
- Myriad CHEM applications are anticipated for space and terrestrial applications