Medical Device Applications of Shape Memory Polymers

D.J. Maitland¹,

- T. Wilson¹, W. Small¹, J. Bearinger¹, J. Ortega¹,
- J. Van de Water² and J. Hartman²

¹ Medical Technology Program, Lawrence Livermore National Laboratory
 ² University of California at Davis Medical Center

September 23, 2007

Introduction: MTP interventional device history

Part I SMP Background

Shape memory example: thermally activated polyurethane

SMP is fabricated into primary shape

Deformed above Tg, then cooled to fix secondary shape

Actuated back into primary shape by controlled heating

Shape memory example: thermally activated polyurethane

- Narrow transition state
- Drastic change of properties at transition state Copyright,2007@Diaplex Co.,

Courtesy of S. Hayashi

Ltd./Mitubishi Heavy Industries, LTD.

History of SMPs

Types of SMPs and activation mechanisms

Types of SMPs

- *Type I: Chemically crosslinked glassy Thermosets
- Type II: Chemically crosslinked semi-crystalline rubbers
- Type III: Physically crosslinked thermoplatics
- *Type IV: Physically crosslinked block copolymers

(Liu, Qin and Mather, *J. Mater. Chem.* 2007)

Activation Mechanisms

- Chemical
- Photo
- *Thermal

Bi-stable, unidirectional actuation

SMP properties

Comparison with shape memory alloy (SMA)

(Hayashi et al., Plast. Eng. 7 1995)

Temperature (°C)

- Desired SMP features: sharp transition temperature, superelastic (low loss modulus, high strain recovery), rapid & complete fixing
- Other: variable Tg, optically clear, imaging contrast, biocompatibility

SMP enables complex geometries and shapes

Basket for catching large emboli (micro-injection molded)

smp.llnl.gov

SMP foam for treating aneurysms (chemically blown, open cell foam)

SMP stent (dip coated and laser machined)

Part II Medical Applications

1996: Treating potential hemorrhagic stroke with a SMP coil release system

Embolic coil release: first SMP device in human trials

0 ms

133 ms

267 ms

100 ml/min flow rate, 37 C

Courtesy of S. Hayashi

Intravenous syringe cannula

When injection is performed, it keeps its rigid state. Once under the skin, it becomes flexible, resulting in greater comfort.

From Nipro

Copyright,2007@Diaplex Co., Ltd./Mitubishi Heavy Industries, LTD.

Courtesy of K. Gall

Target biomedical applications

- Cardiovascular Stents
 - Delivery via shape memory effect
 - Match mechanical properties of artery
 - Complex geometries to match arteries
 - Funding: NIH
 - Student: Chris Yakacki

- Slow deployment into tissue
- Minimize tissue damage
- Deployment past scar
- Funding: NIH
- Student: Scott Kasprazak

Deployment of a SMP Stent from a Catheter

SMP Probe (left) and tissue response (right)

Other groups working on SMP medical applications

- Biodegradable stents, sutures Lendlein & Langer
- Orthodontic implants Mather
- SMP foams for aneurysms Metcalf & Sokolowski
- Stents Shandas & Gall

Interventional applications of SMP devices

Low force recovery forced redesign of embolectomy device

Maitland et al. *Lasers Surg. Med.* (2002) Metzger et al. *J. Biomed. Micro Dev.* (2002) Small et al. *IEEE Trans Quant. Elec.* (2005)

> Hybrid SMP-SMA, resistively actuated

Small et al. *IEEE Trans Biomed Eng* (2007)

In vivo deployment of SMP-nitinol embolectomy device

Hartman et al. Am J Neuroradiol (2007)

Fabrication of SMP vascular stent

- Dip coated 4 mm dia. stainless steel pin
 - DIAPLEX, $T_g \approx 55 \text{ °C}$
 - Wall thickness≈250 µm
- Pattern cut with excimer laser
- Added laser-absorbing dye
- Inserted diffuser and SMP foam cylinder
 - Center diffuser in stent lumen
 - Improve illumination uniformity
 - Reduce convective cooling
- Collapsed for catheter delivery using crimping machine with heated blades

Baer et al. Biomed Eng Online (submitted)

In vitro deployment of SMP vascular stent

Baer et al. Biomed Eng Online (submitted)

- Zero flow; 37 °C water
- Only ~60% expansion when flow increased to 180 cc/min (carotid artery)

Fabrication of SMP embolic foam

- Open-cell foam developed at LLNL
 - *T_g*≈45 °C; adjusted by varying monomer ratios
 - Density=0.02 g/cc;
 - ~60X volume expansion
 - Dye added during or after processing
- Collapsed over a diffuser for endovascular delivery
 - Crimping machine with heated blades

In vitro aneurysm deployment

- Two silicone elastomer halves cast around CNC-milled part
- Room temperature (21 °C) water
 - Low T_g foam would expand at body temperature (37 °C)
- Flow rates 0-148 cc/min
 - 0: blocked flow
 - 70 cc/min: basilar diastolic
 - 148 cc/min: basilar systolic

Maitland et al. J Biomed Opt Lett 2007

Part III Current Directions

New SMPs

Courtesy of T. Wilson Advanced Materials I, Tuesday, 11am

LLNL urethane SMPs designed for laser actuated therapeutic device use:

- Based on HDI, TMHDI, IPDI, HMDI, HPED, and TEA (urethane) chemistry.
- Amorphous thermoset polymer
- Optically clear
- Tg's from 34 to ~145 °C
- Very sharp (glass) transitions
- High recovery force
- High % shape recovery
- Aliphatic => biocompatibility
- No ester/ether links => biostable
- Use neat or as open cell foam

T.S. Wilson et.al., *JAPS*, **106(1**), 540, 2007.

Targeted Processing and Fabrication

Characteristics:

- Chemically/physically blown
 urethane network foams
- Highly open cell structure
- Porosities up to 98.6%
 (Volume Expansibility to ~70x)
- Tg's from ~ 40 to 90 °C
- Composition HDI, TMHDI, HPED, and TEA
- In Vitro results suggest good biocompatibility.

Courtesy of T. Wilson

Courtesy of K. Gall

Linking Chemistry and Mechanics

K. Gall and C. Yakacki: Work in Review

Predictive Modeling

Courtesy of K. Gall

Constitutive Framework

Constrained Stress Prediction

Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani (2006) Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Model. *International Journal & Plastics*, vol. 22, pp. 279-313.

SMP biocompatibility

- In vitro: Diaplex and LLNL neat and foam negative activation of human platelets, cytokines, t-cells, negative toxicity (Cabanlit et al. Macromol Biosci 2007).
- In vivo: negative inflammatory or adverse thrombogenic response [foams (Metcalf et al., Biomat 2003), stents (in prep)]

Cabanlit et al. Macromol Biosci 7, 48-55 (2007)

Radiopacity of SMP composites

Device-body interactions: in vitro deployment of SMP embolic foam

- With flow, convective cooling prevented full expansion
- With zero flow, full expansion in 60 s with ΔT≈30 °C (not shown)

- Extra dye added to overcome convective cooling
- Laser power slowly ramped to 8.6
 W over 3 min
- At 70 cc/min, full expansion in 3 min with ΔT<2 °C

Maitland et al. J Biomed Opt Lett 12, 030504 (2007)

CFD provides an estimate of thermal damage resulting from the heated SMP foam

Summary

- The application of SMP to Medical Devices in its infancy
 - ~12 academic groups publishing medical SMP research
 - 6+ companies pursuing SMP medical devices
 - 2+ companies selling SMP
- Significant commercial cruxes remain aging, fabrication, sterilization, long-term toxicity
- Our team will continue to work on interventional applications with Stroke focus
 - Emphasis on device-body interactions (physics, biocompatibility, image-guided delivery)
 - Document commercially relevant topics
 - Pre-clinical studies
 - Engineered bulk and surface chemistry for biological applications

Acknowledgments

Financial support

- National Science Foundation Center for Biophotonics (CBST). CBST, an NSF Science and Technology Center, is managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999.
- NIH National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462 (BRP)
- LLNL Laboratory Directed Research and Development Grants 04-LW-054 and 04-ERD-093

Co-investigators

LLNL:	UC Davis:	UC Berkeley:
Ward Small	Jon Hartman	Omer Savas
Tom Wilson	Judy Van de Water	Wil Tsai
Bill Benett	Scott Simon	
Jane Bearinger	Robert Gunther	UCSF:
Wayne Jensen	Bill Ferrier	David Saloner
Jason Ortega	Ted Wun	
Julie Herberg	John Brock	
Erica Gersjing	Maricel Cabanlit	
Jennifer Rodriguez	Eric Gershwin	
Melodie Metzger	Geraldine Baer	

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.